Systems biology

Systems biology is the computational and mathematical analysis and modeling of complex biological systems. It is a biology-based interdisciplinary field of study that focuses on complex interactions within biological systems, using a holistic approach (holism instead of the more traditional reductionism) to biological research.[1] This multifaceted research domain necessitates the collaborative efforts of chemists, biologists, mathematicians, physicists, and engineers to decipher the biology of intricate living systems by merging various quantitative molecular measurements with carefully constructed mathematical models. It represents a comprehensive method for comprehending the complex relationships within biological systems. In contrast to conventional biological studies that typically center on isolated elements, systems biology seeks to combine different biological data to create models that illustrate and elucidate the dynamic interactions within a system. This methodology is essential for understanding the complex networks of genes, proteins, and metabolites that influence cellular activities and the traits of organisms.[2][3]  One of the aims of systems biology is to model and discover emergent properties, of cells, tissues and organisms functioning as a system whose theoretical description is only possible using techniques of systems biology.[1][4] By exploring how function emerges from dynamic interactions, systems biology bridges the gaps that exist between molecules and physiological processes.

Systems biology” 에 대한 한 가지 생각

댓글이 닫혀 있습니다.